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Abstract

Background: Evidence on the associations of emerging cardiovascular disease risk factors/markers with genes may
help identify intermediate pathways of disease susceptibility in the general population. This population-based study
is aimed to determine the presence of associations between a wide array of genetic variants and emerging
cardiovascular risk markers among adult US women.

Methods: The current analysis was performed among the National Health and Nutrition Examination Survey
(NHANES) III phase 2 samples of adult women aged 17 years and older (sample size n = 3409). Fourteen candidate
genes within ADRB2, ADRB3, CAT, CRP, F2, F5, FGB, ITGB3, MTHFR, NOS3, PON1, PPARG, TLR4, and TNF were examined
for associations with emerging cardiovascular risk markers such as serum C-reactive protein, homocysteine, uric
acid, and plasma fibrinogen. Linear regression models were performed using SAS-callable SUDAAN 9.0. The
covariates included age, race/ethnicity, education, menopausal status, female hormone use, aspirin use, and lifestyle
factors.

Results: In covariate-adjusted models, serum C-reactive protein concentrations were significantly (P value
controlling for false-discovery rate ≤ 0.05) associated with polymorphisms in CRP (rs3093058, rs1205), MTHFR
(rs1801131), and ADRB3 (rs4994). Serum homocysteine levels were significantly associated with MTHFR (rs1801133).

Conclusion: The significant associations between certain gene variants with concentration variations in serum
C-reactive protein and homocysteine among adult women need to be confirmed in further genetic association
studies.

Background
Coronary heart disease and stroke remain the leading
causes of death and disability for men and women in
the United States [1,2]. Atherosclerotic cardiovascular
disease, which affects the heart, brain, and peripheral
circulation, is responsible for the majority of the cases
[3]. Traditional risk factors cannot fully account for the
variation in the prevalence of heart disease in the gen-
eral population. Some biomarkers, including C-reactive
protein, fibrinogen, uric acid, and homocysteine, are

among those which have been proposed as potential
modifiable risk factors/markers in the last two decades.
Inflammation plays a key role in the initiation, pro-

gression, and outcome of atherosclerosis [4,5]. In pro-
spective studies, markers of inflammation such as C-
reactive protein (CRP) and fibrinogen have been found
to be predictive of atherosclerosis and an increased risk
of CVD events [4-16]. Elevated levels of plasma homo-
cysteine and serum uric acid have been associated with
increased risk of cardio- or cerebrovascular disease
[17-21]. In addition, these emerging cardiovascular risk
biomarkers influence each other and are correlated with
conventional risk factors/markers such as high blood
pressure or hyperlipidemia [22-24].* Correspondence: afan@cdc.gov
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The concentrations of all four emerging biomarkers
(CRP, fibrinogen, uric acid, homocysteine) are caused by
complex interactions between environmental risk factors
and predisposing genes. The candidate genes in this
study, i.e., ADRB2, ADRB3, CAT, CRP, F2, F5, FGB,
ITGB3, MTHFR, NOS3, PON1, PPARG, TLR4, and TNF,
have been suggested to confer excess risk of cardiovas-
cular disease, although the results are inconsistent from
different association studies [25]. These candidate genes
were selected from a set of variants that were previously
genotyped in the NHANES III genetic data [26] and
were identified from systematic literature reviews of pre-
viously published candidate gene association studies and
meta-analyses [27-33].
The evidence on the associations of four novel risk

factors/markers with these genes may help identify
intermediate pathways of CVD susceptibility in the gen-
eral population. For example, because genetic traits con-
fer a risk of inflammation, common gene
polymorphisms (> 1% frequency in the general popula-
tion) may explain an individual’s likelihood of develop-
ing inflammation or why some have a greater
inflammatory response than others [34-36]. The
National Health and Nutrition Examination Survey
(NHANES) III DNA bank offers a unique sample to
carry out this analysis as it has a large sample size and a
diversity of ages, races and ethnicities that is representa-
tive of the US population. We examined the presence
and magnitude of associations between candidate
genetic variants (n = 27) within ADBR2, ADBR3, CAT,
CRP, F2, F5, FGB, ITGB3, MTHFR, NOS3, PON1,
PPARG, TLR4, and TNF [26,37] and four cardiovascular
risk markers (CRP, fibrinogen, homocysteine, and uric
acid) among adult women.

Methods
Study Sample
Participants took part in the second phase (1991-1994)
of the Third National Health and Nutrition Examination
Survey (NHANES III). The NHANES are complex, mul-
tistage cross-sectional sample surveys conducted by the
National Center for Health Statistics (NCHS) of the
Centers for Disease Control and Prevention (CDC).
NHANES III included a stratified multistage probability
design to provide national estimates of common diseases
and their respective risk factors for the civilian non-
institutionalized population in the United States ages
two months or older, from 1988 through 1994. Data
collection for NHANES occurs at three levels: a brief
household screener interview, an in-depth household
survey interview, and an extensive medical examination
[38]. Population weights are calculated for each indivi-
dual to make the data representative of the US popula-
tion. In the second phase of NHANES III, white blood

cells were frozen and cell lines were immortalized with
the Epstein- Barr virus, creating a DNA bank. The cur-
rent analysis was performed among adult women aged
17 years and older (n = 3409). The study was approved
by the NCHS Ethics Review Board. NHANES III DNA
bank, selection of candidate genes and variants, genotyp-
ing methods, and quality controls are detailed elsewhere
[26].
Genotyping Methods
Most genotypes were assayed either by TaqMan (5’
nuclease assay; Applied Biosystems, Foster City, CA) or
by the MGB Eclipse Assay (3’ hybridization triggered
fluorescence reaction; Nanogen, Bothwell, WA). ADRB2
and F2 were genotyped using pyrosequencing. Water
controls and DNA samples with known genotypes, pur-
chased from Coriell Cell Repository (Camden, NJ) were
included on each well plate [26].
Biochemical Analysis
The laboratory procedures for the assessment of serum
C reactive protein, serum uric acid, serum homocysteine
and plasma fibrinogen are available from the NCHS
website [39].
Covariates
Potential confounders of the gene-outcome relationship
were selected a priori. Demographic characteristics
include age (17-40 yrs, 41-59 yrs, 60 + yrs), race-ethni-
city (non-Hispanic white, non-Hispanic black, Mexican
American), and educational attainment (< 12 yrs, 12 yrs,
college and above). Lifestyle factors include smoking sta-
tus (current, former, never), drinking status (lifetime
abstainer, former drinker, current drinker), total dietary
fiber intake (≥ or < 7 gm/1000 kcal), total energy intake
(≥ or < 1600 kcal per day), and physical activity (none,
low, high). Other covariates include BMI (< 25 kg/m2,
25-29.9 kg/m2, ≥ 30 kg/m2), menopausal status (yes/no),
female hormone use (yes/no), and aspirin use (yes/no).
Details on descriptions of covariates are available else-
where [32].
Statistical Analysis
Weighted allele frequencies of genetic variants in the US
population by race/ethnicity using the NHANES III
phase 2 DNA bank have been presented elsewhere [26].
Deviations from Hardy-Weinberg proportions were

tested in a standard unweighted analysis using Chi-
square goodness-of-fit approach. Point estimates and
95% confidence intervals for the distribution of the
demographic, lifestyle and biomarker variables were cal-
culated. The Taylor series linearization approach was
used to estimate the variance for standard errors.
Adjusted means of the outcome variables (inflamma-

tion markers) by gene variants were obtained from mul-
tiple linear regression models. Candidate covariates/
potential confounders included age, race/ethnicity, edu-
cation, menopausal status, female hormone use, smoking
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status, drinking status, dietary fiber intake, total energy
intake, physical activity, body mass index, and aspirin
use. However, only significant covariates “in the crude
models” were retained in fully-adjusted models for a
specific marker predicted by certain genetic variants. For
CRP, total energy intake was excluded; for fibrinogen,
dietary fiber intake was excluded; for homocysteine,
drinking status was excluded; and for uric acid, drinking
status and aspirin use were excluded. Minimally
adjusted models were also presented with adjustment of
only race/ethnicity. We presented adjusted means by
genotype [40] and made groupwise comparisons. A P
value ≤ 0.05 of the Satterthwaite-adjusted F-statistic in
fully adjusted models was considered as statistically sig-
nificant. False Discovery Rate (FDR)-adjusted P values
(adjusted for a maximum of 27 tests) are presented
along with unadjusted P values from Wald Chi-square
tests. All outcome variables were right-skewed and were
thus log-transformed before analysis. The analyses were
performed in SAS-callable SUDAAN 9.01 (Research Tri-
angle Institute, NC, 2007) to account for the complex
sampling design, non-response, and sample weights for
Genetic Component of NHANES III.

Results
Characteristics of the study population based on the
3,409 participants are described in Table 1. The
weighted frequency distribution was 81.3% non-Hispanic
white, 13.2% non-Hispanic black, and 5.6% Mexican
American. Current smokers accounted for 25.7% of the
study population, while 43.3% were current drinkers.
Approximately 41% of women have undergone meno-
pause; and about 16% were currently using any form of
female hormone. The correlation matrix for the four
logarithm-transformed biomarkers is shown in Addi-
tional File 1: Table S1. The Pearson correlation coeffi-
cients ranged from 0.04 to 0.39.
In fully-adjusted models, serum C-reactive protein

concentrations were significantly associated with poly-
morphisms in CRP (rs3093058, rs1205), MTHFR
(rs1801131), ADRB3 (rs4994) (Table 2). Plasma fibrino-
gen levels were significantly associated with TNF
(rs1800750), though not after adjustment for multiple
testing (Table 3). Serum uric acid levels were signifi-
cantly associated with CRP (rs1417938) and TNF
(rs361525), though also not after correction for multiple
testing (Table 4). Serum homocysteine levels were sig-
nificantly associated with F2 (rs1799963), MTHFR
(rs1801131, rs1801133, rs2066470) and ADRB2
(rs1042713) (Table 5). However, only rs1801133
remained significant with an FDR-adjusted P value of
0.005. Compared with minimally adjusted models, most
associations became more significant in fully adjusted
models. The following data for the concentrations of the

Table 1 Characteristics of study population of US women,
Third National Health and Nutrition Examination Survey,
Phase 2 (1991-1994)

Percent (Standard Error)

N = 3,409

Age

17-40 45.6 (1.8)

41-59 30.2 (1.6)

60+ 24.2 (2.2)

Race/Ethnicity

Non-Hispanic white 81.3 (1.8)

Non-Hispanic black 13.2 (1.7)

Mexican American 5.6 (0.8)

Educational attainment

< 12 yrs 22.1 (1.6)

12 yrs 37.5 (1.4)

College or above 40.4 (2.4)

BMI (kg/m2)

< 25 48.1 (1.9)

25-29.9 25.4 (0.8)

≥ 30 26.5 (1.4)

Smoking status

Current smoker 25.7 (1.5)

Former smoker 18.7 (1.4)

Never smoker 55.6 (1.8)

Drinking status

Lifetime abstainer 17.9 (1.7)

Former drinker 38.8 (1.3)

Current drinker 43.3 (2.2)

Total dietary fiber intake

≥ 7 gm/1000 kcal 59.8 (1.9)

< 7 gm/1000 kcal 40.2 (1.9)

Total energy intake

≥ 1600 kcal 56.4 (1.4)

< 1600 kcal 43.6 (1.4)

Physical activity

None 22.7 (2.1)

Low 35.3 (1.1)

High 42.0 (1.9)

Menopausal status

Yes 40.7 (2.2)

No 59.3 (2.2)

Aspirin use

None 68.0 (1.2)

< 1 day/month 30.1 (1.1)

≥ 1 day/month 1.8 (0.4)

Female hormone use

Yes 16.0 (1.4)

No 84.0 (1.4)

Serum C-reactive protein (mg/dL)a 0.33 (0.31,0.35)

Plasma fibrinogen (g/L)a 3.00 (2.95, 3.06)

Serum homocysteine (umol/L)a 8.17 (8.01, 8.33)

Serum uric acid (umol/L)a 270 (265, 276)
a Data are geometric mean (95% confidence interval).
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four biomarkers in relation to the 27 candidate SNPs
from minimally-adjusted and fully adjusted models are
shown in additional file 1 available online (URL): the
adjusted least-square means (LSMEANS) and standard
errors (SE), exponentiated adjusted LSMEANS (CI), and
P values for Satterthwaite adjusted F-statistic.

Discussion
Cardiovascular diseases are multi-factorial as their patho-
genesis is determined by genetic and environmental fac-
tors, as well as gene-gene and gene-environment
interactions. This population-based genetic association
study provides evidence that some intermediate CVD risk
markers may be influenced by common genetic variants.
Numerous candidate gene studies have examined the

role of inflammatory gene polymorphisms and the risk
of CVD [41-45]. However, the findings remain inconsis-
tent and the magnitude of associations remains modest
[46]. C-Reactive protein is a systemic marker of inflam-
mation and plays an important role in the pathogenesis
of atherogenesis and its thrombotic complications.
Plasma C-Reactive protein concentrations have been
associated with CRP polymorphisms [42,43]. Although
C-Reactive protein concentrations are a strong indepen-
dent predictor of future vascular events, there has been
no direct evidence that CRP variants contribute to cardi-
ovascular disease phenotypes such as carotid intima-
media thickness or arterial thrombosis [47-49].
Fibrinogen plays a key role in the final step of the coa-

gulation cascade, i.e., the formation of fibrin; and it is a
major determinant of plasma viscosity and erythrocyte
aggregation. There is a large variation on estimates of

the genetic heritability of plasma fibrinogen [44,45]. The
researchers who estimated low heritability argued that
environment, rather than genetic influences, has a
greater effect on the level of plasma fibrinogen. It is also
under debate whether plasma fibrinogen is a primary
risk factor/mediator for coronary heart disease, or
whether it is a marker for disease [50]. A large cohort
study showed that fibrinogen may partly mediate the
effects of other risk factors on carotid atherosclerosis,
though it may not play a causal role [51]. The evidence
from molecular biology seems to support the view that
fibrinogen is a marker, rather than a mediator, of vascu-
lar disease [52]. Whether the association of plasma fibri-
nogen with the gene polymorphisms found in this
report could be replicated in other genetic association
studies remains unknown.
The findings that serum uric acid levels were asso-

ciated with CRP and TNF polymorphisms need to be
confirmed by other studies especially because the asso-
ciation was no longer significant after FDR adjustment.
The underlying mechanisms need to be examined. In
the literature, uric acid levels have been shown to be
correlated with plasma levels of circulating TNF-alpha
[53] and increased CRP expression [24]. Other genetic
variants have been found to explain the variance in
serum uric acid concentrations [54-56].
Plasma homocysteine is a thiol compound derived

from methionine that is involved in two main metabolic
pathways: the cycle of activated methyl groups, which
requires folate and vitamin B12 as cofactors; and the
transsulfuration pathway to cystathionine and cysteine,
which requires vitamin B6 as a cofactor. Elevations in

Table 2 Sample size and adjusted geometric means (95% confidence intervals) of serum C-reactive protein (mg/dL)*

Genotype Minimally adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted Fully adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted

rs3093058 (CRP) 0.0013 0.018 0.0012 0.023

TT 0.45 (0.29,0.71) 0.44 (0.29,0.66)

TA 0.42 (0.37,0.49) 0.41 (0.36,0.46)

AA 0.32 (0.30,0.34) 0.32 (0.31,0.33)

rs1205(CRP) 0.0012 0.018 0.0059 0.038

AA 0.28 (0.26,0.31) 0.29 (0.27, 0.31)

AG 0.32 (0.30,0.34) 0.32 (0.31, 0.34)

GG 0.34 (0.32,0.37) 0.34 (0.32, 0.35)

rs1801131 (MTHFR) 0.35 0.71 0.0024 0.023

TT 0.33 (0.29,0.36) 0.30 (0.28,0.32)

TC 0.32 (0.30,0.34) 0.32 (0.30,0.33)

CC 0.33 (0.31,0.35) 0.33 (0.32,0.35)

rs4994 (ADRB3) 0.022 0.19 0.0026 0.023

CC 0.29 (0.20,0.42) 0.29 (0.23, 0.38)

CT 0.29 (0.27,0.31) 0.29 (0.28, 0.31)

TT 0.33 (0.31,0.35) 0.33 (0.31, 0.34)

Note. *Only associations with unadjusted P (i.e., not adjusted for FDR) ≤ 0.05 in fully adjusted models are presented. FDR = false discovery rate.
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Table 4 Adjusted geometric means (95% confidence intervals) of serum uric acid (umol/L)*

Genotype Minimally adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted Fully adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted

rs361525 (TNF) 0.05 0.76 0.04 0.55

AA 225 (185-275) 233 (195-279)

AG 258 (248-268) 257 (246-268)

GG 272 (267-278) 272 (268-276)

rs1417938 (CRP) 0.16 0.76 0.03 0.55

TT 261 (248-273) 259 (250-270)

TA 270 (265-274) 268 (263-273)

AA 273 (267-278) 274 (268-279)

Note. *Only associations with unadjusted P (i.e., not adjusted for FDR) ≤ 0.05 in fully adjusted models are presented. FDR = false discovery rate.

Table 5 Adjusted geometric means (95% confidence intervals) of serum homocysteine (umol/L)*

Genotype Minimally adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted Fully adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted

rs1801133 (MTHFR) 0.0002 0.0054 0.0002 0.0052

TT 9.9 (8.9-11.1) 9.8 (8.9-10.8)

TC 8.2 (8.0-8.5) 8.2 (7.9-8.5)

CC 7.7 (7.5-8.0) 7.7 (7.6-7.9)

rs2066470 (MTHFR) 0.05 0.46 0.022 0.28

TT 8.2(7.4-9.1) 8.1 (7.1-9.3)

TC 7.8 (7.5-8.1) 7.7 (7.5-8.0)

CC 8.2 (8.0-8.4) 8.2 (8.0-8.4)

rs1801131 (MTHFR) 0.02 0.28 0.05 0.28

CC 7.9 (7.4-8.4) 8.0 (7.3-8.8)

CA 7.8 (7.6-8.1) 7.8 (7.5-8.1)

AA 8.5 (8.1-8.8) 8.4 (8.1-8.7)

rs1799963 (F2) 0.16 0.85 0.039 0.28

AA -a - -

AG 7.7 (7.1-8.4) 7.5 (6.9-8.2)

GG 8.2 (8.0-8.4) 8.2 (7.9-8.3)

rs1042713 (ADRB2) 0.17 0.85 0.04 0.28

AA 8.1 (7.7-8.6) 8.1 (7.7-8.5)

AG 8.4 (8.1-8.7) 8.4 (8.1-8.7)

GG 7.9 (7.6-8.2) 7.8 (7.5-8.2)

Note. *Only associations with unadjusted P (i.e., not adjusted for FDR) ≤ 0.05 in fully adjusted models are presented. FDR = false discovery rate. a The frequency
is zero for this genotype.

Table 3 Adjusted geometric means (95% confidence intervals) of plasma fibrinogen (g/L)*

Genotype Minimally adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted Fully adjusted
model LSmean (95% CI)

Punadjusted PFDR-adjusted

rs1800750 (TNF) 0.13 0.86 0.013 0.35

AA 3.2 (2.5,4.1) 2.8 (2.3,3.5)

AG 3.4 (2.9,3.9) 3.5 (3.1,3.9)

GG 3.0 (2.9,3.1) 3.0 (2.9,3.1)

Note. *Only associations with unadjusted P (i.e., not adjusted for FDR) ≤ 0.05 in fully adjusted models are presented. FDR = false discovery rate.
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plasma homocysteine may be caused by genetic defects
in enzymes involved in its metabolism or by deficiencies
in cofactor levels [57]. Although the genetic influence of
MTHFR polymorphisms on homocysteine levels is well-
known, it is under debate whether the MTHFR poly-
morphism per se might be an independent contributor
to cardiovascular risk [58].
There are some limitations in this study. First, the

NHANES DNA bank was set up mainly to assess the
allele frequency of these genes in a population-based
sample, but it may not necessarily be one of the strong
study designs to do genetic association studies. Second,
our candidate genes were not selected based solely on
explicit molecular/cellular biological pathways. For
example, our study shows significant associations
between ADRB3 and MTHFR genes to be associated
with concentrations of serum C-reactive proteins
although ADRB3 was mainly proposed to be a candidate
gene for blood pressure and MTHFR was for serum
homocysteine. The results are not surprising because of
complex pathogenetic connections between immuno-
inflammatory reactions, elevated homocysteine levels,
and high blood pressure [59,60]. Third, the four biomar-
kers investigated in the study are largely influenced by
environmental factors which may not be adequately cap-
tured by current study.
We did not investigate whether genetic and environ-

mental factors modify each other in these associations.
For example, hormone replacement therapy (especially
estrogen) might be associated with increased inflamma-
tory activity [61]. How genetic factors interact with
inflammation-modulating effects of estrogen in causing
adverse effects on atherogenesis or determining unfavor-
able clinical outcome is worthy of further investigation.
Further studies are also needed to validate findings from
recent genome-wide association studies that have
revealed potential new SNPs [49,62,63].

Conclusion
Our study provides some evidence that genetic factors
contribute to the pathogenesis of inflammation and
other CVD risk markers among adult women. Such
knowledge may lead to improved prevention and treat-
ment efforts. Identifying the variants that may modify
the levels of these risk markers may allow for improved
targeting and treatment of individuals or populations at
an increased risk for future CVD events.

Additional file 1: Supplemental Tables. Table S1. Exponentiated
adjusted least-square means of concentrations of the four biomarkers
(95% CIs) in relation to the 27 candidate SNPs from minimally-adjusted
models. the adjusted least-square means (LSMEANS) and standard errors
(SE), exponentiated adjusted LSMEANS (CI), and P values for Satterthwaite
adjusted F-statistic are shown. Table S2. Exponentiated adjusted least-
square means of concentrations of the four biomarkers (95% CIs) in

relation to the 27 candidate SNPs from fully-adjusted models. the
adjusted least-square means (LSMEANS) and standard errors (SE),
exponentiated adjusted LSMEANS (CI), and P values for Satterthwaite
adjusted F-statistic are shown.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-6-
S1.DOC ]
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